
Using I/O on Cray XT
Systems

Lonnie D. Crosby
Computational Scientist

“NCCS/NICS Fall 2009 Cray XT5
Hex-core Workshop”

December 8, 2009

Application Performance

• Computation (FLOPs)
– Processor

• Inter-process Communication
–  Interconnect

• Memory
– Capacity and Speed

• I/O
–  File System

2

Cray XT5 Compute Node

Factors which affect I/O.
• I/O is simply data migration.

– Memory Disk
• Layout

• Size of write/read operations
– Bandwidth vs. Latency

• Data continuity and locality in memory and
on disk
– Bandwidth vs. Latency

• Number of processes performing I/O
–  I/O Pattern

• Characteristics of the file system
– Distributed or Shared

3

Application I/O Patterns

Serial I/O
• Spokesperson

– One process performs I/O.

Parallel I/O
• File per Process

– Each process performs I/O to a single file.

• Single Shared File
– Each process collectively performs I/O to a single shared file.

• Multiple Shared Files
– Groups of processes perform I/O to a single shared file.

4

Parallelism

5

Processes

Filesystem

Parallelism

• Process level parallelism
– MPI
–  IO Libraries (MPI-IO, HDF5, p-netCDF)

• File System parallelism
– Distributed File System
– Shared Parallel File System (Lustre)

6

Limits of I/O
• Serial I/O

–  Is limited by the single process which performs I/O.

• Parallel I/O
–  Is limited by the number of disks which are concurrently

utilized.
– Contention for file system resources.

• Distributed File System
–  Files are localized on a single disk.

• Parallel File System
–  Files are localized on a single disk.
–  Files are striped across multiple disks.

7

8

A Bigger Picture: Lustre File System

©2009 Cray Inc.

9

A Bigger Picture: Lustre File System

OSS OSS

Lustre Striping: File Parallelism

10

• lfs setstripe
– Stripe size -s (default: 1M)
– Stripe count -c 5 (default 4, -1 All)
– Stripe index -i 0 (default: -1 round robin)
< file | directory >

Lustre Striping: File Parallelism

11 ©2009 Cray Inc.

12

OSS OSS

A Bigger Picture

• Computational
Nodes
– Kraken: 8253

• Object Storage
Server Nodes
– Kraken: 48 (30 GB/s)

• Object Storage Target
– Kraken: 336 (2.4 PB)

[7.2 TB Disk]

Spokesperson – Serial I/O
Importance of data locality
•  32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

 Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
rit

e
(M

B
/s

)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

13

Spokesperson – Serial I/O
Importance of data continuity

 Lustre

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

W
rit

e
(M

B
/s

)

Stripe Size (MB)

Single Writer
Transfer vs. Stripe Size

32 MB Transfer

8 MB Transfer

1 MB Transfer

• Single OST, 256 MB File Size

14

Data Locality and Continuity

• Data Locality
– Performance is decreased when a single process

accesses multiple disks.
–  Is limited by the single process which performs I/O.

• Data Continuity
–  Larger read/write operations improve performance.
–  Larger stripe sizes improve performance (places

data contiguously on disk).
– Either may become a limiting factor.

15

Single Shared File

• Important Considerations
– Data locality
– Data continuity

• Parallel file Structure

Lustre

16

Single Shared File

Lustre

17

Single Shared File

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32 64

W
rit

e
(M

B
/s

)

Stripe Count

Single Shared File (32 Processes)
1 GB and 2 GB file

1 MB Stripe (Layout #1)

32 MB Stripe (Layout #1)

1 MB Stripe (Layout #2)

Lustre

18

Data Locality and Continuity

• Data Locality
– Performance is increased when portions of a

shared file are localized on a single drive.
– Contention is minimized.

• Data Continuity
–  Larger read/write operations improve performance.
–  Larger stripe sizes improve performance (places

data contiguously on disk).
– Either may become a limiting factor.

19

Scalability: File Per Process

• 128 MB per file and a 32 MB Transfer size

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
rit

e
(M

B
/s

)

Processes or Files

File Per Process
Write Performance

1 MB Stripe

32 MB Stripe

20

Scalability: Single Shared File

• 32 MB per process, 32 MB Transfer size and Stripe size

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
rit

e
(M

B
/s

)

Processes

Single Shared File
Write Performance

POSIX

MPIIO

HDF5

POSIX (1 MB Stripe)

21

Scalability

• Serial I/O
–  Is not scalable. Limited by single process which

performs I/O.

• File per Process
–  Limited at large process/file counts by:

• Metadata Operations
• FileSystem Contention

• Single Shared File
–  Limited at large process counts by filesystem

contention.
–  File striping limitation of 160 OSTs in Lustre

22

Buffered I/O
• Advantages

– Aggregates smaller read/write
operations into larger operations.

– Examples: OS Kernel Buffer,
MPI-IO Collective Buffering

• Disadvantages
– Requires additional memory for

the buffer.
– Can tend to serialize I/O.

• Caution
–  Frequent buffer flushes can

adversely affect performance.

23

Buffer

Standard Output and Error

• Standard Ouput and Error
streams are effectively serial I/O.

• Generally, the MPI launcher will
aggregate these requests.
(Example: mpirun, mpiexec,
aprun, ibrun, etc..)

• Disable debugging messages
when running in production
mode.
–  “Hello, I’m task 32000!”
–  “Task 64000, made it through loop.”

24

 Lustre

Binary Files and Endianess
• Writing a big-endian binary file with compiler

flag byteswapio
File “XXXXXX" 
 Calls Megabytes Avg Size 
Open 1  
Write 5918150 23071.28062 4088 
Close 1  
Total 5918152 23071.28062 4088

• Writing a little-endian binary
File “XXXXXX" 
 Calls Megabytes Avg Size 
Open 1  
Write 350 23071.28062 69120000 
Close 1  
Total 352 23071.28062 69120000

• Can use more portable file formats such as HDF5,
NetCDF, or MPI-IO.

25

Case Study: Parallel I/O
• A particular code both reads and writes a 377 GB file.

Runs on 6000 cores.
–  Total I/O volume (reads and writes) is 850 GB.
– Utilizes parallel HDF5

• Default Stripe settings: count 4, size 1M, index -1.
–  1800 s run time (~ 30 minutes)

• Stripe settings: count -1, size 1M, index -1.
–  625 s run time (~ 10 minutes)

• Results
–  66% decrease in run time.

26

Lustre

Case Study: Buffered I/O
• A post processing application writes a 1GB file.
•  This occurs from one writer, but occurs in many small write operations.

–  Takes 1080 s (~ 18 minutes) to complete.
•  IOBUF was utilized to intercept these writes

with 64 MB buffers.
–  Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
 Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

27

Lustre

IOBUF -Beta Library

• module load iobuf/beta
• Relink application with the Cray wrappers (ftn, cc, CC)
• Controlled by environmental variable at runtime.

–  setenv IOBUF_PARAMS ‘*:verbose’
– man iobuf for more information

• Intercepts standard I/O calls. May not operate with the
use of I/O libraries such as netcdf.

28

MPI-IO Usage

• Included in the Cray MPT library.
• Environmental variable used to help MPI-IO optimize I/O

performance.
–  setenv MPICH_MPIIO_HINTS
– man mpi for more information

• If given appropriate information (stripe count, size) can
choose aggregators in collective operations that are
Lustre stripe aligned. (collective buffering).

29

Conclusions

• Serial I/O
–  For a single process is limited by the single I/O stream.
–  For a file-per-process pattern limitation is due to simultaneous metadata

operations (file open) at large core counts. Additionally, increasing
contention for file system resources can adversely affect performance.

• Parallel I/O
–  For a single shared file limitation is due to file system contention at large

core counts. Lustre limitation of 160 OSTs per file.
–  MPI-IO can be utilized to minimize file system contention at large core

counts by utilizing collective buffering and appropriate hints.

•  Lustre
–  Appropriate stripe settings should be utilized to minimize file system

contention.

30

References

• Lustre File System – White Paper October 2008
–  http://www.sun.com/software/products/lustre/docs/

lustrefilesystem_wp.pdf

• Introduction to HDF5
–  http://www.hdfgroup.org/HDF5/doc/H5.intro.html

• The NetCDF Tutorial
–  http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-

tutorial.pdf

31

